Synteny perturbations between wheat homoeologous chromosomes caused by locus duplications and deletions correlate with recombination rates

Eduard D. Akhunov^a, Alina R. Akhunova^a, Anna M. Linkiewicz^a, Jorge Dubcovsky^a, David Hummel^{b,c}, Gerard R. Lazo^b, Shiaoman Chao^{b,c}, Olin D. Anderson^b, Jacques David^{a,d} ,610.5(Miftahudison)]TJ6.5 o o 520

^J, Junhua Peng^k, Nora L. V. Lapitan^k, Emily J. Wennerlind^I, Vivienne Nduati^I, James A. Anderson^I, Deepak Sidhu^m, Kulvinder S. Gill^m, Patrick E. McGuire^c, Calvin O. Qualset^c, and Jan Dvorak^{a,n}

^aDepartment of Agronomy and Range Science and ^cGenetic Resources Consifetc

such as a translocation, reduces the length of the syntenic group that the chromosome shares with a homoeologous chromosome.

synteny indicated that 75% of these perturbations actually

occurred during the evolution of wheat diploid ancestors.

Synteny perturbations were not equal among the three genomes. Whereas 8–9% of the B genome loci defied syntenic relations, only 4–6% of the A and D genome loci defied syntenic relations. A greater differentiation of the B genome chromosomes from their A and D genome homoeologues, than that of

low-recombination regions than $S_{i,B/A}$, $S_{i,D/A}$, $S_{i,A/D}$